Rohit Khare's dissertation describes the ARREST+E architectural style for building estimated systems on a web-like foundation. He derives this architecture based on styles developed to reduce the time it takes for a client and server to reach consensus on a value (they have the same value). The styles he derives from are based on leases of values which mirror the web's cache expiry model. An assumption of this work is that servers must not change their value until all caches have expired, which is to say that the most recent expiry date provided to any client has passed. He doesn't explicitly cover the way the web already works as an estimated system: by lying about the expiry field.
Most applications on the web do not treat the expirty date as a lease that must be honoured. Instead, they change whenever they want to change and provide an expiry date to clients that represents a value much less than they expect the real page to change at. Most DNS server records remain static for at least months at a time, so an expiry model that permits caching for 24 hours saves bandwith while still ensuring that clients have a high probability of having records that are correct. Simply speaking, if a DNS record changes once every thirty days then a one-day cache expiry gives clients something like a 29 in 30 chance of having data that is up to date. In the mean time caching saves each DNS server from having to answer the same queries every time someone wants to look up a web page or send some email.
The question on the web of today becomes "What will it cost me to have clients with the wrong data?". If you're managing a careful transition then both old and new DNS records should be valid for the duration of the cache expiry. In this case it costs nothing for clients to have the old data. Because it costs them nothing it also costs you nothing, excepting the cost of such a careful transition. When we're talking about web resources the problem becomes more complicated because of the wide variety of things that a web resource could represent. If it is time-critical data of commercial importance to your clients then even short delays in getting the freshest data can be a problem for clients. Clients wishing to have a commercial advantage over each other are likely to poll the resource rapidly to ensure they get the new result first. Whether cache expiry dates are used or not clients will consume your bandwidth and processing power in proportion to their interest.
The ARREST+E style provides an alternative model. Clients no longer need to poll because you're giving them the freshest data possible as it arrives. ARREST+E invovles subscription by clients and notification back to the clients as data changes. It allows for summarisation of data to avoid irrelevant information from being transmitted (such as stale updates) and also for prediction on the client side to try and reduce the estimated error in their copy of the data. If your clients simply must know the result and are willing to compete with each other by effectively launching denial of service attacks on your server then the extra costs of ARREST+E style may be worth it. Storing state for each subscription (including summariser state) may be cheaper than handling the excess load.
On the other hand, most of the Internet doesn't work this way. Clients are polite because they don't have a strong commercial interest in changes to your data. Clients that aren't polite can be denied access for a while until their manners improve. A server-side choice of how good an estimate your copy of the resource representation will be is enough to satisfy everyone.
Whether or not you use ARREST+E with its subscription model some aspects of the architecture may still be of some use. I periodically see complaints about how inefficient HTTP is at accessing RSS feeds. A summariser could reduce the bandwith associated with transferring large feeds. It would be nice to be able to detect feed reader clients to a resource specifically tailored for them each time they arrive. Consider the possibility of returning today's feed data to a client, but directing them next time to a resource that represents only feed items after today. Each time they get a new set of items they would be directed onto a resource that represents items since that set.
Benjamin